
  1 

 

Wednesday 26 June 1013 

Parallel session A3  - 8W 2.23 16:00-17:30 

How responsive do you want your website? 
 
ANSTEY Paula University of Bristol 
ASHURST Stephen Loughborough University 
BAILEY David Bath Spa University 
BEARD Chris Keele University 
BRIERTON Richard University of Sheffield 
BROWN Barney University of Cambridge 
BYLES Robin The University of Sheffield 
CORBETT Craig National Oceanography Centre 
CORNFORTH David Jisc infoNet 
EVANS Stephen University of St Andrews 
GLYNN Alison University of Strathclyde 
HEAP Michelle University of Leicester 
LANCASTER Michael Keele University School of Medicine 
MCLAUCHLAN Ryan Univeristy of Dundee 
SENIOR Ian University of Oxford IT Services 
SHAH Hatim National Oceanography Centre, Southampton 
SMITH Joel UCL 
SNEEZUM Russell Anglia Ruskin University 
THIRLWELL Jonathan University of Kent 
TRAFFORD Sam University of Liverpool 
WHATMOUGH Allan Birkbeck, University of London 
WILKS Gemma The University of Nottingham 

 

Abstract 
2012/13 saw the redesign of the University web templates into a responsive design suitable for both 
central University and departmental use. We chose to be as responsive as possible and (finally) took 
delivery of a set of templates only a couple of months later than planned. We used a studio for the design 
process that had some expertise in responsive design, but was that enough to give us what we needed and 
is it resilient enough for day-to-day use? I'll be telling you about the theory and the practice, and how 
delivery of complex templates affects the community of users in the University. All and any mobile 
devices are welcome! 

 

Introduction 
Our environment 
Cambridge is a very distributed environment – we have a central server that acts as a hub to content that 
is accommodated on over 800 web servers throughout the University. Most of these web servers are run 
individually, although there are some service providers of CMSs, notably the Computing Service provision 
of a Plone-based service (which at the start of this project hosted about 80 sites), the Clinical School 
Computing Service (which hosted about 30 WordPress sites), and the Central Admin Computing (which 
hosts some 15-20 sites in a custom system). The central server was run in a custom system not suitable for 
expansion. 

The previous iteration of templates had been released in 2007/8, used on the central sites in a slightly 
modified form and released as a template pack for download by departments. It had been well accepted 
but had often been adapted by departments for their own use, which resulted in some strange 
manifestations of the central style. The design was in need of a change, to accommodate mobile devices 
more effectively, use more up-to-date coding and to introduce more imagery. 



  2 

 

Where we started 
At the time we started (November 2011 – January 2012), the prime (and new) example of a major site 
using responsive design was The Boston Globe (http://www.bostonglobe.com/), famously built by Ethan 
Marcotte. 

                  

Our initial design brief (January 2012: Appendix A) was pretty long and painstaking and we were quite 
pleased about all the things we’d thought of. With responsive design being so new to mainstream, we 
didn’t know enough about using navigation, images, image carousels and video and using tables across 
devices to know that these were really difficult and undecided areas of responsive design. 

In the selection of the design company, we looked at 10 companies, most of whom didn’t have any grasp 
of responsive design beyond the term. The company of choice, which was the only one to have actually 
created a responsive site (albeit their own), identified the following two areas as being key: 

• Navigation methods were identified as a hard challenge – both in terms of providing coherent 
navigation for the desktop view and providing sensible navigation for mobile devices. 

• Use of javascript would be minimized and CSS used instead, to reduce the load on pages 

What we thought we could have 
A look at our specification shows that what we wanted was a set of templates that was fast, efficient and 
easy to use for our non technical people and web managers, but we also wanted fully responsive.  What 
we didn’t know then was that there is a disconnect between the first two and the last of these items. 

The design process 
Where it succeeded 
Once we got past the workshop stage we had rapid iterative meetings about code requirements. The 
designers came up with many ideas and presented cases to support them, some we accepted and some we 
didn’t. 

Where it didn’t 
• The design team were remote – this and an over-ambitious schedule meant a lot of travelling and 
time out of the office by us. Often some people were missing from meetings – detailed discussions 
couldn’t take place and some decisions were made ad hoc. 

• The designers were very keen on workshops with users to work on information architecture, and 
did not allocate enough time to solving the technical problems thrown up by creating the templates. They 



  3 

 

had worked on responsive templates before but badly underestimated the number of complex problems 
that were part of our project. In part this is usual behavior, exacerbated by the newness of the challenges 
they took on. 

The delivered templates 
The delivered templates had some features that we hadn’t asked for in our specification and a few 
problems/issues: 

• For the headings, the designers wanted to connect the templates with the paper-based house 
style and use Typekit to supply Myriad Pro. Although we agreed this and were able to buy a licence for 
University use at a reasonable price, we did discover some cross-browser problems that hadn’t been 
accounted for (see Appendix B for details). 

• Alternate colour schemes were provided so that template users could have some variation – these 
were derived from the colour palette used in the paper-based house style. Initially there were six colour 
schemes and we added another, discovering on the way that it was really quite complex to do this and 
integrate the new style into the stylesheets, and also involved creating a css background image. 

• despite being asked, the designers had not allocated a namespace for the template attributes. 
Previous experience showed this was essential when incorporating templates into a CMS. 

• the working templates were much more complex and tag-heavy than expected. It quickly became 
obvious that it would be too labour intensive to use the templates by hand. 

• the delivered ‘live styleguide’ was very short of examples with real content, which meant that 
working out the mechanisms of some navigation items took longer than expected, since it was derived 
from a single example. 

• Although the use of javascript was restricted, just to achieve responsive design at this level 
requires more javascript than you might hope for. Use of libraries needs to be watched closely, however 
cutting down the libraries provided will create future difficulties with installing updates. 

Installing the templates into a CMS 
Initially there were two core CMSs into which the templates would be installed. One already up and 
running (Plone-based) and one to be built (Drupal-based) that would house the core site and be suitable 
for using as departmental sites.  

• The Plone-based CMS already hosted 80 or so sites (live and in development), which were to be 
migrated into the new templates, first on a test basis and then the development sites and finally the live 
sites individually on a site-by-site basis. There was a system upgrade to undertake and a move to a new 
template management strategy, so we bought in specialist help to build the new site model and 
troubleshoot template installation. 

• The Drupal-based system was built from scratch by a contractor after much familiarizing with the 
developing templates and the requirements both for the core site and a departmental site. 

• Although there was a demand for a WordPress version of the templates, this was not being used 
centrally and there was neither the effort available nor the money to create this straight away. 

 



  4 

 

Explaining the templates 
The basic template is created in 12 columns – these are usually grouped either as 4 groups of 3 columns, 
or combinations of these (3/6/3 for a content page with left navigation and content in a right column). As 
you look through the screenshots you will recognize the patterns. 

Responsive breakpoints 
We elected to have only two main visual breakpoints, one for mobiles and small devices (<767px) and one 
for larger screens – there are some small intermediate differentials for varying the intermediate behaviour 
of the global navigation bar. 

Global navigation and footer 
The global navigation and footer is added to all pages except that the header is different on the University 
home page. They are given the now-ubiquitous black background and house navigation aids. Here are 
some views of the global header, showing first the standard view:  

 

the view with a drawer open (the first two links open drawers, the ‘Research’ link open a page directly): 

 

then the popdown Quicklinks list: 

 

The mobile view of the global header: 

 



  5 

 

The popdown list of navigation available in the mobile view (pushes in at left side and disappears again if 
the ‘list’ icon is selected): 

 

The standard (local) footer: 

 



  6 

 

and in mobile view (the lists collapse and the heading’s link is used): 

 

The global footer: 

 

The mobile view of the footer: 

 

Site header 

 

 



  7 

 

Site navigation bar 
The navigation bar shows items at the top level of the site and, in the desktop view, exposes the next 
level of navigation in a popdown. It is designed to stay constant for the site: 

 

In the mobile view the navigation bar collapses to a menu (covered more below), with further level of 
navigation rolling in from the right when the right arrow is selected: 

 

Content navigation (left-hand in desktop view) 
The left hand navigation was the most difficult to create – it went through several iterations before it was 
deemed appropriate for dealing with ‘infinite levels of navigation’. The model is that a vertical 
breadcrumb is created, so the navigation item and its siblings are visible, with a trail formed of its 
antecedents. It is visible only in the desktop view – in the mobile view the menu locates the current item 
and gives its context. In a deep page: 

 



  8 

 

In the mobile view, the menu orientates to the following, with the current page in bold: 

 

Responsive tables 
The designers came up with a selection of different ideas for tables. Some of them are clever but have 
the disadvantage of needing additional coding to make them work. These are the first three, listed in the 
live styleguide: 

 

A vertical stacking table: 

 



  9 

 

In the mobile view, this table type stacks as follows: 

 

In addition we have a simple table at 100% width. In a mobile view of a table wider than the window, 
there will be scrolling to the right. 

Images 
In most contexts images (including those in carousels) will be responsive, so that they will resize to fit the 
window available (see behaviour of the image carousel on http://www.cam.ac.uk/). There is no 
substitution of image sizes, so the filesize doesn’t vary. A style has been created to enclose an iframe and 
make embeds responsive – this will only work when the enclosed iframe content will respond. 

In the desktop view of an image on a second-level page: 

 

 



  10 

 

In the mobile view: 

 

Accommodating the features and fixing issues 
Images 
There are several aspects to the use of imagery in these templates that need extra attention, compared 
with use of the previous version: 

• The images need to be of high quality both in terms of the interest, composition and balance, the 
initial size and resolution. 

• Site admins need to do preparation work to create images of the right resolution and dimensions  

• Sites can use touch icons and favicons, production of which requires additional skills and some 
design input 

Reverse engineering and combining styles 
Although in some respects creating a set of templates that acts as the core references is a good idea, the 
work required to integrate the functionality and styles into CMSs is considerable. In our environment, 
where there is more than one CMS, there was little alternative, and it does give the discipline of learning 
exactly what the templates do and how they work. In order to incorporate some nested styles they have 
had to be combined.  

Github for template management 
Github is used to manage the templates, and is used to manage the forks for styles and modified 
javascript that have been produced for the CMSs. 

Making the navigation work 
As has been described, the navigation is complicated and all parts of it require javascript to ensure it 
behaves responsively. In Plone, making the navigation work proved not to be too difficult – making the 
navigation bar behave properly in the mobile view was the trickiest. In Drupal too, this was the case. A 
problem is that the site has to be continuously indexed to ensure the navigation represents a true map of 
the site, which is a big overhead on a CMS and a likely source of other interacting issues. 

Making the page height work 
There is a javascript that calculates the heights of columns and ensures the page finishes neatly at the 
bottom of the lonest one. It turned out that the designers version of this was not robust and it needed to 
be rewritten, but it seems to work OK now. 

Fixing (some of) the other issues 
Other issues are/ have been: 



  11 

 

• IE9 compatibility. Although IE9 was one of our level-1 browsers, there have been javascript and 
CSS issues with both the navigation and the carousel that haven’t yet been solved. These are not show-
stoppers, but mean that the intended functionality isn’t what happens so becomes a support problem. 

• Typekit problems. There have been two issues with use of Typekit: the first that IE can only 
support four font versions of Typekit fonts, unless you use different IE-specific CSS; the second that there 
accessibility problems with Zoomkit causing distortion of Typekit fonts when they are magnified. 

•  Shifting CSS and javascript issues caused by browser changes. Because we are on the bleeding 
edge, everytime a browser changes there is a risk of something breaking. Chrome seems to be the browser 
that does this most often, with Chrome on Linux presenting unique issues several times already. Chrome is 
narrowly our most frequently used browser (see p15). 

What we provide, now and future 
At the moment we provide: 

• A central site running on Drupal, with 13 additional separate central sites running variations of the 
same code. 

• A content management service running approximately 88 live sites (45 in the new templates), and 
73 development sites – with and additional 5-10 sites a month being added. 

• The templates available via Github to developers that can manage them – 4 static live sites have 
been launched via this route 

• A Drupal site object and theme in a late development stage for use by sites that have sufficient 
skill to be able to create and manage their own Drupal site. 

• A WordPress theme is being developed (although not centrally) for the sites in the University that 
currently use the old templates. It’s unlikely that this will be able to support all the functionality and it 
will almost certainly be a look-alike suitable only for small sites. 

Example sites:  

• http://www.cam.ac.uk 

• http://www.ucs.cam.ac.uk 

• http://www.hist.cam.ac.uk 

• http://www.infectiousdisease.cam.ac.uk 

Supporting users 
We are still putting content into the templates and all the while turning up issues that challenge their 
functionality, especially in content that is deep down in a site. 

The Office of Communications supports users who are thinking of migrating into the new templates in 
their choice of how to do it. Templates were delivered with a ‘live styleguide’, which has turned out to be 
a mixed bag: it has much reference that is only for the central teams and is be far too thin to be helpful 
for end users, so needs to be properly re-written and expanded (see 
http://comms.group.cam.ac.uk/Project-Light/)  

The Falcon content management service is supported via a help website, provision of an introductory 
course that runs every month, and a series of courses for current users (one per month) to expand their 
skills. Support for people migrating into the new templates is becoming more hands-on as the more 
adventurous move and the less adventurous need more help. We will have to migrate the tail-end 
ourselves so we can stop supporting the old templates and system. 

Problem areas and observations 
The list of problem areas span all sorts of different user groups and reasons: 

• Depth of header – the header is deep and some site managers resent the waste of screen space. 
Caution is needed to make sure the mobile view isn’t too top heavy, especially if the site has a long title 
and/or a logo. 



  12 

 

• Left-hand content navigation in desktop view – the ‘vertical breadcrumb’ structure is not one 
that all content managers or site users understand. The appearance is understated and probably needs to 
be clearer/bolder. 

• Use of images and carousels – requires technical skills and a visual flair not previously demanded 
of template users 

• Page weight – the pages are much heavier than we had hoped, but probably not heavy for the 
features they offer 

• Site indexing – continual reindexing of the site to create the navigation is an overhead and in 
some cases causes unforeseen interactions with other functionality 

• Complexity of code – the templates are very delicate and are impossible to manage by hand 
unless you have a high level of skill. 

Our Vice –Chancellor has made it know he wants Departments to migrate into the new templates by the 
end of the year if possible. We set up a questionnaire, which 95 web managers completed. The answers 
indicated that the chief worries about the new templates were: 

• The need for clear guidance about what they were meant to do and how to migrate (particularly 
less technical managers) 

• The need for more guidance on how to use the new templates 

Going forward 
As well as the possible wider template release after documentation has been improved, we are planning: 

• A six-month review of usage and feedback (in July/August) 

• A major review after one year 



  13 

 

Appendix A – Initial design brief January 2012 
Web templates feature set 
We would like you to produce detailed guidance as to consistent and appropriate use of the new 
templates, not only in the core area but beyond.  For example: this guidance should provide details as to 
page structure (h1, h2 etc), Link usage, appropriate use of sidenav (all pages referenced by the sidenav 
must have the same sidenav), appropriate use of tabbed interfaces, graphical additions for use in lists etc.  

The University runs a site-wide search engine that can be used to search either the whole site, a defined 
group of sites, or a single site. A search box for the search engine must appear on each template with 
configuration options available. 

Intellectual property 
The ownership of the templates will be the University and we must be free to modify, enhance and use 
outside of the ‘core’ website.  The templates must therefore be of sufficient generality to have all of the 
key elements modified in house (for example to replace images, multimedia or to change the number 
and/or order of key navigation links in sidebars etc). 

General principles: 
• Contemporary, responsive design, created with a mobile-first strategy. 
• Allow deep levels of navigation 
• Allow social media integration 
• We want our site to be fast to use, both through the use of the user interfaces it presents people, 

but also through the efficiency of its resources, code etc. 
• Future facing … we’re happy to and embrace the opportunity to use bleeding edge technology.  
• Backwardly compatible … we need to support and recognise legacy browsers 
• Easy to use for our non technical people and web managers. Whilst we will be implementing the 

templates through our central content management systems with the support of our central web 
teams, the templates will also be used in distributed departments around the University with 
differing skill sets. We need to make our sites easier to use for those outside and inside the 
University. 

• Portable to the following content management systems, but must be content management system 
agnostic: 
• Wordpress 
• Drupal 
• Plone 

 

Specific templates for: 

• New homepage (http://www.cam.ac.uk/) 
We recognise that a homepage design project is a different design and build challenge in its own 
right but we’re aspiring to go live in October with a refreshed homepage and core content. We 
welcome thoughts on how best to run the project to take on board a homepage and site redesign 
at the same time most effectively. We’re also conscious that our homepage, above all other 
pages, needs to load as fast as possible, and make a big impression. 

• Landing/portal page (http://www.cam.ac.uk/research/) 
• Content page (http://www.admin.cam.ac.uk/offices/hr/immigration/points/) 
• Search results page (http://search.cam.ac.uk/web?query=accommodation&x=0&y=0) 

 

Components AND templates 
In addition to templates delivered to deal with particular illustrated examples, we would also like them to 
be delivered through componentisation. 

We feel a componentised mind-set will give us the best chance of making the new design work anywhere, 
without getting bogged down in CSS & HTML conflicts. We think this is the key to future-proofing the new 
design and making it an extensible and long-lived asset to the University. We welcome your thoughts on 
this approach. 



  14 

 

 We’re flexible about how the HTML, CSS, JavaScript, images and other supporting files are put together 
and supplied, as long as the following principles are observed.  

• The reference templates must provide well-crafted, minimal, static examples of all the design 
features and widgets required. 

• We need a componentised page model, where a page is conceptually built from a standard 
library of widgets or components. [See note (a).] 

• We must be able to easily identify all the supporting files needed for a specific page 
component so they can be extracted and straightforwardly implemented within an arbitrary 
CMS. This imposes requirements on how a component's supporting files are packaged. [See 
note (b).] 

• The HTML and CSS must be economic and minimal without sacrificing the component 
structure. [See note (c).] 

• The reference implementation should be CMS- and platform-agnostic. 
  

Notes: 
a) A component might be, for example: a header, page navigation, slideshow player, Events widget, 

comments form, login box, search widget. Basically, any part of the design which fulfils a specific 
functional purpose. 

b) We welcome suggestions on how best to componentise all the assets (HTML, CSS, etc.) 
c) The component structure must be represented in the HTML and CSS. One of the biggest problems 

with the current HTML/CSS is that it uses general CSS selectors to do specific things (like float all 
images right because they happen to be like this on one page, or make the font size in all tables 
90%). It started off well but went off-track because this principle apparently wasn't observed. 

  

Content types 
We need templates and components that can deal with (at least) the following content types: 

• Vacancy adverts (http://www.jobs.cam.ac.uk/job/-11932/) 
• Policies and procedures (http://www.admin.cam.ac.uk/offices/hr/policy/) 
• News (http://news.admin.cam.ac.uk/news) 
• Events (http://www.admin.cam.ac.uk/whatson) 
• Forms (http://www.cam.ac.uk/global/search/) 
• Course listings and search 

(http://www.admin.cam.ac.uk/offices/gradstud/prospec/studying/qualifdir/courses/) 
• Video and audio (http://www.sms.cam.ac.uk) 
• Photography (http://www.cam.ac.uk/research/discussion/women-and-children-first/) 
• Discussion boards 
• Academic profiles (http://www.cei.cam.ac.uk/directory/djc77@cam.ac.uk) 
• Contact information 

(http://www.admin.cam.ac.uk/global/cgi/stafflist.cgi?officeabbr=communications) 
• Blog entries and listing pages (http://www.cam.ac.uk/research/discussion/) 
• Gateway pages (http://www.lib.cam.ac.uk/libraries/) 
• Section home pages (http://www.cam.ac.uk/international/) 
• Campaign websites (http://www.cam.ac.uk/sciencefestival/) 
• RSS listings  
• Search (http://search.cam.ac.uk/web?query=&x=15&y=10) 
• Page controls for navigating multiple pages of results 

(http://search.cam.ac.uk/web?query=web+templates) 
 

We would expect approaches to the following to be identified: 

• Version control 
• Development roadmaps 
• Release cycles 
• Bug reporting 
• User testing 



  15 

 

Technical specification for the templates (and associated components) 
• To be supplied as ‘stand-alone’ html5/css. 
• Conform to the University Web Accessibility Guidelines: http://www.cam.ac.uk/site/accessibility-

guidelines/pages.html  
• Placeholders must be supplied for description and keyword metadata and guidance provided for 

search engine optimisation.  
• Include html mark-up and the CSS style-sheets required. 
• Must be accompanied by print style-sheet(s). The print style-sheet should remove any unnecessary 

navigational elements, background images, add any information useful in an isolated page (urls, 
for instance) and result in a pleasing appearance. 

• Must be built for and tested against handheld devices but not through reliance on device-specific 
style-sheets. 

• Validate to html5. 
• Use validated stylesheets 
• Use accessible Javascript. 

Browser compatibility 
We expect our site to work in as many different browser and operating system setups as possible. The 
following shows the dominant systems used to access our core site: 

 

Browser Dec 2010 – Dec 2011 May 2012 – May 2013 

Visits % of total visits Visits % of total visits 

Internet Explorer 
(8,9,10,7) 

6,445,885 37.85 4,324,431 27.33 

Firefox (9,8,3) 4,457,656 26.17 3,202,653 20.24 

Chrome 2,977,378 17.48 4,512,429 28.51 

Safari 2,704,985 15.88 3,153,399 
(+66,537 in-app) 

20.35 

Opera 221,560 1.30 148,168 0.94 

Opera Mini 54,238 0.29 64,690 0.41 

Android Browser 50,133 0.29 237,201 1.50 

(Google Analytics running on our main www.cam.ac.uk website) 

In December 2011 the use of Internet Explorer was: ie9, 25%; ie8, 55%; ie7, 16%; ie6, 4%; Mobile devices constituted 
about 6% of our visits. 

In May 2013 the use of Internet Explorer was: 1e10, 18.4%; ie9, 37.3%; ie8, 35.3%; ie7, 7.9%; ie6, 1.2%; Mobile devices 
constituted about 13.5% of our visits. 

 

Accessibility 
• All templates and components must be accessible to WCAG 2.0 AA level 
• The colour scheme/pallette chosen must be from within the colour palette in the University 

identity guidelines (see 
http://www.admin.cam.ac.uk/offices/communications/services/identityguidelines/), made with 
consideration to colourblind users. 

• As well as providing our web managers with a set of colours to pick from we welcome suggestions 
for aesthetically and accessibility sensitive colour schemes which could be shipped with the 
templates. 

• The templates must incorporate the following access keys  
o Access key 1 - Home page. 
o Access key 2 - Skip to content. 
o Access key 4 - Search page. 
o Access key 0 - Help (this page). 



  16 

 

There should also be a skiplink to skip over any navigation directly to the content. 

While html5 accesskey attributes may be used, care must be taken that they are functional in a 
representative number of browsers by the time the templates are to come into use. (Ref 
http://www.w3.org/TR/html5/editing.html#assigning-keyboard-shortcuts) 

Details of html5 use 
Before coding, agreement must be reached over choices for inclusion of elements for best dealing with 
browsers not fully compatible with html5. Examples are html5 enabling script and inclusion of video.  

Mobile (responsive web design) 
We want our new templates to work across as many mobile devices as possible. As such we favour a 
responsive web design approach. We think this approach offers a pragmatic way forward for serving 
content to multiple devices whilst not having to maintain different forks of design. Please submit 
alternative approaches as you see fit. 

Styles 
• Templates must clearly separate out markup and design.  Design/styling must be controlled by 

stylesheets.   These must be modular with common/global styles in a single file with additional 
stylesheets provided for the functionality of particular pages. 

• Stylesheets provided should be in CSS version 2.1/3, providing that this does not adversely impact 
the page accessibility and in line with our spread of browser use.  All pages must be readable with 
stylesheets disabled.   

• A range of type faces must be provided for any given style, always ending with the generic font 
type (serif or sans serif).  Fonts that are not commonly available across Windows, Unix and Mac 
computers must not be used. 

• Please don’t use tables for layout. 

Character encoding 
• Character encoding must be for utf-8. 
• Valid HTML entities must be used for all non 7-bit ASCII characters. 

Scripting (Jquery) 
We’re comfortable with our site using Jquery providing that the site still functions and can deliver content 
to our users who have Javascript disabled (or a javascript-less browser). However, please don’t create 
templates which rely on scripting for correct display.  

Metadata and search engine optimisation 
We expect the templates to indicate how to integrate metadata most effectively, and to be optimised for 
search engines as much as possible. 

 



  17 

 

Appendix B: Typekit licence and issues 
Typekit licence 
We purchased a 3-year Enterprise licence for unlimited site use, for code and fonts hosted on Typekit’s 
CDN and mirrirored on our CDN, which costs $6750 per year for 50 million pageviews/month. 

There is online help at the http://help.typekit.com/ site, which was useful once we’d worked out what 
the problem was (different styling required for use by IE) – below from 
http://help.typekit.com/customer/portal/articles/6855-using-multiple-weights-and-styles. 

Using variation-specific names in IE 6-8 
Internet Explorer 6, 7, & 8 load a maximum of four weights per family.  Additionally, using two closely-
related weights (e.g., 400 and 500) may result in only one weight loading correctly. Typekit serves 
variation-specific font-family names to those versions of the browser to work around both of these bugs. 
 
The variation-specific name should be added at the beginning of a font-family stack as needed, before the 
main Typekit family name: 

#post-title {   font-family: "proxima-nova-n6", "proxima-nova", sans-serif;   font-style: 
normal;   font-weight: 600; }  

The names consist of the normal font-family name, followed by a dash, followed by a font variation 
description (or FVD) [http://typekit.github.io/fvd/]. For example, the variation-specific name for 
proxima-nova that contains only the normal 600 weight font is proxima-nova-n6. 
 
The variation-specific name will be undefined in browsers that don't have these issues, so they will use the 
full family name that comes second in the stack. 

You can find the appropriate variation-specific font-family name for each weight and style within the Kit 
Editor. Select a family on the right, then click "Using weights & styles in CSS" on the left and check the 
box at the bottom to show variation-specific names.  

 

Many users won't need to make use of these additional font-family names. You'll only need to add them if 
you're trying to work around any of the following issues: 



  18 

 

Trying to use more than four weights and styles in a single family in IE 6-8 
All three of the older IE browsers have a bug that limits them to four weights and styles linked to a single 
font-family name. In these browsers, Typekit has always filtered the enabled weights and styles down to 
fit within the constraints. If you want to use more than the filtered set in these browsers, you can use 
variation-specific font-family names to get around the limitation. 

Certain weights not showing up in IE8 when used in combination with other weights 
Aside from the four weights and styles limitation, IE8 has additional limitations. Certain combinations of 
weights don't work together when linked into the same font-family name. Using variation-specific names is 
a valid workaround for this problem. 

Spacing randomly changing between page refreshes in IE8 
When more than a single weight or style is linked to a font-family name, IE8 has a few more bugs that 
crop up occasionally. IE8 will sometimes randomly alter the letter spacing or line-height of fonts when any 
linking is used. Adding a variation-specific font-family name prevents this bug from triggering. 

Fonts on the page randomly changing when using iframes in IE8 
Another bug triggered by linking in IE8 causes fonts to flicker, appear, or disappear randomly when 
iframes are used on the page. This is commonly seen when using components that use iframes under the 
covers, like the Facebook “Like” button or certain modal dialogs that display content from other pages. 
Adding a variation-specific font-family name works here as well. 

 


